skip to main content


Search for: All records

Creators/Authors contains: "Danovich, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electron momentum spectroscopy, scanning tunneling microscopy, and photoelectron spectroscopy provide unique information about electronic structure, but their interpretation has been controversial. This essay discusses a framework for interpretation. Although this interpretation is not new, we believe it is important to present this framework in light of recent publications. The key point is that these experiments provide information about how the electron distribution changes upon ionization, not how electrons behave in the pre‐ionized state. Therefore, these experiments do not lead to a “selection of the correct orbitals” in chemistry and do not overturn the well‐known conclusion that both delocalized molecular orbitals and localized molecular orbitals are useful for interpreting chemical structure and dynamics. The two types of orbitals can produce identical total molecular electron densities and therefore molecular properties. Different types of orbitals are useful for different purposes.

     
    more » « less
  2. Abstract

    Electron momentum spectroscopy, scanning tunneling microscopy, and photoelectron spectroscopy provide unique information about electronic structure, but their interpretation has been controversial. This essay discusses a framework for interpretation. Although this interpretation is not new, we believe it is important to present this framework in light of recent publications. The key point is that these experiments provide information about how the electron distribution changes upon ionization, not how electrons behave in the pre‐ionized state. Therefore, these experiments do not lead to a “selection of the correct orbitals” in chemistry and do not overturn the well‐known conclusion that both delocalized molecular orbitals and localized molecular orbitals are useful for interpreting chemical structure and dynamics. The two types of orbitals can produce identical total molecular electron densities and therefore molecular properties. Different types of orbitals are useful for different purposes.

     
    more » « less